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Abstract 
No known specific algorithm is developed to track human doing squat with a real and big barbell on. The 
existence of a large barbell and drastic movement like squatting can make human body in some frames 
quite different from normal human body like in figure 1. Thus, specifically modified methods are needed 
to solve this task. In the following parts we will introduce our fully developed tracking algorithms to track 
the squat movement from video sequences. 

Literature s  
In [1], an approach to tracking the human motion of balancing on each foot was developed. In this research, 
the author first defined a hierarchical 2D human body model, which includes six major components: head, 
body and four limbs. Each of the four limbs can be further decomposed to include primary component 
(upper arms and legs) and secondary component (lower arms and legs), respectively. Each of these body 
model components is represented by a quadrangle and every component is connected to another one by a 
joint. By making use of inherent correlation between different components, the author designed a top-down 
updating framework and an adaptive algorithm with constraints of foreground region for efficient tracking 
of human body for balancing applications. For each component of human body, consecutive two frame’s 
difference can be represented by angle change, then with the constraints of foreground region, Average 
Absolute Difference Image (AADI) was computed between current frame and the former frame. As the 
optimal angle change is consistent with the minimum of AADI, the adaptive algorithm iteratively computes 
the minimum AADI to achieve the optimal state. Experiment results showed that the average tracking time 
is 0.632s which is fast and each part of human body can be tracked accurately. 

In [2], a system for automated human body tracking and modeling based on a monocular camera was 
developed. In this system, eleven joint points including head, shoulder, hip, elbows, knees, hands and feet 
are extracted separately to build a 2D human body model. The head is extracted by analyzing negative 
minimum curvature (NMC) points on a parameterized silhouette. The torso, along with its angle and size, 
is determined by integrating multiple frame information with connectivity constraint. Hands and feet can 
be identified correctly based on a modified star skeleton approach and the nearest-neighbor tracking 
mechanism. The rest of joint points can also be located by taking advantage of the connectivity constraints. 

In [3], this paper explores foreground detection, tracking foreground, analysis technique procedures. First, 
foreground objects are segmented from the background by a four-stage process: thresholding, noise 
cleaning, morphological filters (boundary detection), and object detection. For the tracking process, the 
center of the detected foreground region in the sequences is stored in a trajectory map. For the motion 
analysis, it fuses features together into a fused motion analysis using a weighted averaging process. The (θ, 
α, β, acceleration variations on the centroid of the motion blob) are implemented for analysis. In addition, 
the speed of the bounding box surrounding of the silhouette detected could be used. They consider shadow 
to be a problem for the silhouette based motion identification and analysis, because the structure may be 
fluctuated by the shadow types. 

In [4], the tracking of moving target can be divided as following stages: for target pre-processing stage, a 
moving target region is morphologically dilated (twice), eroded and then its border is extracted. The author 
use blob to track target. The position and velocity of each blob is determined from the last time step t last 
and used to predict a new image position at the current time. Targets that are “close enough” in cost space 
are considered to be potential matches. 

Introduction 
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Our project is based on squat movement, what we do is extracting angles between certain body parts from 
original 2D video of a person doing squat. Squat can be roughly described by two angles: the angle at knee 
between thigh and calf, the angle at hip between back and thigh. Thus, our mainly object is to track these 
two angles. 

  

Figure1 Squat 

We develop two methods to solve this task, one is fast enough to do real time analysis but is limited to 
relative simple background scenario, the other is robust enough to handle complex background situation 
but has too much computation and can hardly be adopted by a real time system 

 

 

Hypothesis 
Our hypothesis is closely connected with the dataset. The general hypothesis includes none camera motion, 
only one person in work space at one time, movement parallel to the camera-plane, slow and continuous 
movements static background. For the sake of computational time in the Hough transform, we also assume 
that the radius of barbell is between 10 percent and 20 percent of the image’s width. In the studio like video 
we assume background has no color closely related to the human clothing, background color is unanimous. 
In the complex background video, high frequency background noise is allowed and we can handle lines, 
which has the same color as human clothing, in the background. 
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Dataset & dataset documentation 
Dataset of this project is built by ourselves. Essentially, we recorded video of a person doing squat and 
details will be discussed as follows. Videos are recorded in a gym subject to our assumption, two different 
kinds of background are covered. One is a studio like background where color of background is of high 
contrast to foreground color.  The other has relative complicated background, high frequency noise from 
ground and wall can exist, same part of the background connected with foreground in the 2D image can 
have same color with foreground, this indeed brings in lots of trouble for segmentation, because foreground 
and background are connected in the view of a single frame. Our dataset is video based so we can only 
provide typical frames in this report. Fig 2 is from simple background video and fig 3 is from relative 
complicated background.  

              

Figure 2 simple background                 Figure 3 complicated ground 

No previous specific dataset for squatting with ground truth exist, so we define our own criterion for the 
ground truth. There are two candidate criterion performs as our ground truth. The first one is we put obvious 
markers on the point we want to extract and track, and simply consider the markers as the ground truth. 
Figure 4 is an example of this criterion. The second criterion is more efficient for evaluation and will have 
less problem with the possible influence of marker can have on the tracking algorithm. It’s based on the 
tracking of target point we want, we just compare the point we extract from the image with the original 
color image, deal the results of each point like a classification point, vote for yes if the point is near the 
target points and no if the target point is far away. This is purely decided by human common sense, and 
because falsely detected points are usually far away from the target, this guarantees this criterion do make 
some sense. 
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Figure 4 with marker 

 

Conduction of experiment 
In general, however simple or hard the dataset is, we will start from segmentation with the video.  In the 
segmentation part, we tested different algorithms finally chose two methods to handle simple and 
complicated background respectively. After a segmented video has been obtained, we do feature extraction 
on this. Different ideas to model human body have been explored and experimented, some has poor results 
and some are too ideal to implement on this practical task. 

 

Background extraction : To handle complicated background video better, a background extraction method 
is developed. We suppose to subtract each frame with the first frame to remove the background. While our 
first dataset has the barbell in each frame. And the barbell will move in the later frame. So, we cannot get 
a total static background from our dataset. We want to extract a static background and use the synthetic 
background to be the background template. 

First of all, to simplify the problem and decrease the computation time. We split the image into patches. 
Then, we picked some important patch such as the patch on the barbell, some patches on the static object 
and patches on the people. We calculated the average brightness of picked patch in all frames. And we plot 
the brightness time curve to analysis how to write the algorithm. 

We found that all the patches will have a flat part at the first several frames. Because now the user was not 
shown in the video. And we can see that the patches on the barbell has a low brightness. Because the color 
of the barbell is black. So, we can use this property to find out the rough area of the barbell. And other area 
is the static background which we can apply them in the final template. 

Next, we find when the user was shown in the video. The curve will change periodically. We focus on the 
barbell area. Some of those patches will change its brightness because the barbell will move and the 
background will be exposed and the brightness of the background is different to the barbell brightness. So 
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we will change all the pixels in the patch to the exposed background value. So, part of the barbell area will 
be like “transparent”. We can see the back of it. 

Now there are still some patches are not be processed. These patches might be some dark static background. 
There are some dark mats in the video. So they are marked as barbell area at first. And even the barbell has 
moved away, the back of the barbell is still dark. So actually they are some dark area. And we set all the 
pixels in these patches to the original values like in the first several frames. Because they are supposed to 
be some dark area, no matter it belongs to barbell or some dark background. 

The above is our thoughts after analysing the brightness time curve of each patch. 

We follow these thoughts and ideas and write this algorithm in Matlab: 

First, we create a template background matrix which has the same size of each frame of the video. And then 
we split it into the 4*4 patches. And we set all the brightness to 0. So the image is now whole black.  

Second, we read the video and use its first frame as the history. And we use the media filter to filter the 
image. Because this filer can get the better result for the barbell area. The edge will not lose. We can get a 
better region of the barbell area. And we split the first frame in to 4*4 patch.  

And for the following frames, we split the frame into 4*4 patch. We calculate the brightness difference for 
each patch in the frame sequence. If the brightness is larger than 100 and in the continuous 10 frames the 
values of brightness are stable in a specific range, we assume this patch should belong to the static 
background. So we stick this patch into the result image. And now the result image should be filled with 
some patches. And some of the patches in the result image are still black. This region is the rough barbell 
region which may include dark background and barbell.  

When the user is moving the barbell. Some patches belong to the barbell will move and the real background 
will be exposed. So when the real background is exposed. The patches belong to the barbell will be qualified 
to be sticked to the result image. As we can see the barbell will disappear and the real background will be 
exposed.  

Now, most of the patches in the real background image are set. And we set a stop point, when the frame 
number hit the stop point. For example, the current frame is 200. We will stop process this algorithm and 
stick all the patches in the current frame to the real background result.  

The algorithm will not affect our analysis of the movement. Because we will recovery the real background 
before the user start to do squatting. The user will lift the barbell at first and when the user is ready, actually 
all the real background patches are exposed and captured by our algorithm. So we will recovery the real 
background before the user start to do the squatting. And we can subtract the frame with the result of the 
recovered background to get our desired foreground and do the following process.  

As we can see from the result as shown in figure 5.1, the result is not perfect. We can see that some regions 
are very good. But some regions’ brightness is different to their neighbors. We think there are two regions. 
The first one is that the barbell is not totally black, the bar of the barbell is silver which has a high brightness. 
So we will recognize this part to be the real background. And the second reason is the brightness of the 
whole video will change because the shadow and the camera. So, we will have some discontinuity of the 
result. And we stick the patches to the result at different time so that our result will not have some 
discontinuity.  
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Figure 5.1 

To solve the first problem, we need to locate the area of the bar and stick new patch to it when its three 
direction neighbor changes. So at this time, this patch must move and the real background will be exposed. 
We can use some algorithm like label to label all the area. First we can dilate the barbell area. And we use 
label algorithm to get the area of each regions. And the regions with smallest areas are the bar regions which 
are surrounded by the barbell piece as shown below. The region 1 and 2 have large area. The region 3 and 
4 have small area. We can use threshold to select region 3 and 4. And set them to barbell area(black). So 
we can detect bar area and barbell area as shown in figure 5.2. 

To solve the second problem, we can calculate the average brightness of each frame and multiply the patch 
with a factor to solve the global brightness change problem. 

 

Figure 5.2 

We use this recovered background to do the background subtraction. We simply subtract this template from 
each frame and scale the brightness. The result is shown in figure 5.3. 
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Figure 5.3 

We can see that because the pants color is similar to the background such as the white wall.  

And the recovered background is not perfect. So there are some errors in the result. 

We can take a better dataset and refine the recovered background algorithm to get a better result later. 

With the background extraction, we continued our experiments on pre-processing with the input video by 
means of the following techniques.  

 

The objective of the preprocessing experiment is to identify the best result with least noise and most 
complete contour of the person who is doing squatting in the video. We experimented different pre-
processing techniques and execute it on our specific dataset.  

Four main types of techniques were experimented:  

• Background Subrtraction: Five programs were developed in total in this part: We wrote our 
own background subtraction algorithm as a baseline, then implemented other four programs 
based on four type of background subtractors in openCV; In the end we combined them 
together into one program: back_sub.py. For optimal result, we chose Gaussian Mixture-based 
segmentation. 
 

• Edge detection: As an alternative for pre-processing techniques, we implemented Canny 
Operator to generat the edge video; as an improvement, we implemented autocanny program 
to remove some false positive;  
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• Component Extraction: As a further processing for the results from the above two methods, 
three noise filters were experimented in this part to remove noise. Also, we implemented a 
program to find the largest component in the resulting video. 
 

• Optic flow motion detection.  
 

As a baseline of optimizing background subtraction, we developed a program using frame differences. 
Since background subtraction is an idea that detects the moving objects from the difference between the 
current frame and a reference frame, we implemented our simple background subtraction algorithm 
accordingly. As the result of our background subtraction algorithm was far from ideal, subsequent four 
algorithms were implemented using OpenCV.  

 

BackgroundSubtractorCNT: Background subtraction based on counting. This is a fast background 
subtraction solution in OpenCV. 

The four parameters involved in this functions are: maxStability is the stability number of frames with same 
pixel color to consider stable, useHistory determines if we're giving a pixel credit for being stable for a long 
time, maxStability is the maximum allowed credit for a pixel in history, isParallel determines if we're 
parallelizing the algorithm 

The parameters that performed the best are: (5, True, 15*60, True) 

 

BackgroundSubtractorGMG: This algorithm combines statistical background image estimation and per-
pixel Bayesian segmentation. By default, it uses first 120 frames for background modeling (thus we get a 
black window during first few frames). Specifically, this algorithm employs probabilistic foreground 
segmentation algorithm that identifies possible foreground objects using Bayesian inference. The estimates 
are adaptive; newer observations are more heavily weighted than old observations to accommodate variable 
illumination.  

 

The three parameters involved in this functions are history is the length of the history, nmixtures is Number 
of Gaussian mixtures, backgroundRatio is the background ratio, noiseSigma is the noise strength.  

The parameters that performed the best are: (2,0.5) 

 

BackgroundSubtractorMOG: This algorithm is a Gaussian Mixture-based Background / Foreground 
Segmentation Algorithm.  

The parameters involved in this functions are: length of history, number of gaussian mixtures, threshold 
etc. The algorithm uses a method to model each background pixel by a mixture of K Gaussian distributions 
(K = 3 to 5).  

The parameters that performed the best are: (5, 3, 0.7, 0) 
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BackgroundSubtractorMOG2: It is also a Gaussian Mixture-based Background/Foreground 
Segmentation Algorithm.  Compared with BackgroundSubtractorMOG, it provides better adaptability to 
varying scenes due to illumination changes etc.  

For the parameters in this algorithm, we have the option of selecting whether shadow to be detected or not. 
If detectShadows = True (which is so by default), it detects and marks shadows, but decreases the speed. 
Shadows will be marked in gray color. 

The parameters that performed the best are: (5, 15, True) 

The processed results of various background subtractor: 

For the same frame in the video with the optimal parameters that we chose, we can get below processed 
results, which laid the foundation of our final background subtractor choice:         

 

    

 

Figure6.1 Background subtractor processed image (a)CNT (b) GMG 
(c) MOG (d) MOG2 

 

After comparing the optimal results, we decide to choose BackgroundSubtractorMOG2 as our main 
program to segment the input video and compare with the edge video.  

 

Edge operators: As an alternative to background subtraction, we tested edge operators in openCV on the 
input video to get the edge data for comparison. We experimented with Canny operator mainly. 

The Canny operator in openCV is powerful in that it embeds several stages including some pre-processing 
and post-processing techniques.  

Looking into its implementations, we can find stages of this function includes: 

Step 1: Smooth the image using a Gaussian filter to remove high-frequency noise. 
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Step 2: Compute the gradient intensity representations of the image. 

Step 3: Apply non-maximum suppression to remove “false” responses to edge detection. 

Step 4: Apply thresholding using a lower and upper boundary on the gradient values. 

Step 5: Track edges using hysteresis by suppressing weak edges that are not connected to strong edges. 

 

Four arguments can be tuned in this function. The first argument is our input image. Second and third 
arguments are our minVal and maxVal respectively. The third argument is aperture_size. It is the size of 
Sobel kernel used for find image gradients. By default, it is 3. The last argument is L2gradient which 
specifies the equation for finding gradient magnitude. If it is True, it uses the equation mentioned the 
Euclidean formula for the gradient magnitude, otherwise, it uses this function: 
Edge_Gradient(G)=|Gx|+|Gy|.  

To find the optimal value for the arguments in the Canny operator and save the parameter tuning time, 
autoCanny program was implemented which takes the median of the image, and then constructs upper and 
lower thresholds based on a percentage of this median.  

 

 
Figure6.2 auto_canny Edge Operator processed image  
 

Component Extraction: This program was developed with the motivation to eliminate the background 
noise from the MOG2 processed video and Canny operator processed video. It intends to identify the largest 
component and extract a region of interest after segmentation, which in our project is supposed to be the 
contour of the person.  

Theoretically, as the small noise components in the image have the smaller size, we can calculate the 
component size in the image and eliminate the smaller ones. The function connectedComponentsWithStats 
was used to remove the components with the size of fewer than 300 pixels (See below program 
Component_extraction.py for reference).  
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Unfortunately, this algorithm failed in that it will eliminate some edges of the person which are not 
continuous when applied. This made the future analysis of the key points(knees, feet) more difficult.  

     

Figure6.3 Component Extraction processed image 
 
Another method to localize feature points called negative minimum curvature (NMC) has been 
experimented, but due to limited reference paper on that, the method is by no means robust and can only 
be abandoned. However, starting from the idea of curvature, we initialize an idea based on combination of 
curvature and prior human body knowledge. In this method, we first represent human body as polylines, 
then according to the poly lines, tangent values of the curve can be approximated.  

 

Optical flow: We use the canny edge detector to find all the edges in each frame. While except the body 
area edge, there are many other edges like we also detect the wall, the mats on the ground. We change the 
parameter to remove these edges. But the effect is not very good. And we tried to use hough transform to 
detect some special edges and remove them. Because there are many kinds of edges, so that we cannot 
remove all the edges. And we tried to use morphological filter to remove the useless edges. For the same 
reason, this method doesn’t work.  

We find we just want the edges in a small region. We can find the people area and do the canny edge process 
in this area. The spatial differences between people and the background are their brightness, their shape and 
so on. And we cannot separate people with the background perfectly with this spatial information. So we 
want to use temporal information to find the people area. Because mostly, the user is moving. So, firstly, 
we think we can subtract two continue frames to get the difference between two continuous frames and use 
some threshold and filter to get the result. While the result is not very good. Because there are too many 
noises in the video which we cannot filter. And the difference method is very sensitive to noise. We tried 
different patch size and filter. While the result is not very good. So this method cannot work. 

Then we think we can use optical flow to track the moving object. We choose to use Horn-Schunck method 
to do the optical flow process. We can get the movement vector of each patch so that we can know the 
movement speed of each patch. We can use a threshold to detect the moving object. We set the threshold 
to filter the noise and low speed part. The result is better than the difference method. While many low speed 
body parts are lost. For example, the upper body part is very good. Because it will move all the time. While 
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the foot is not clear. Because the foot will not move some time when you are moving. So we cannot get a 
good extraction of the whole body. Because the principle of the method is to detect moving object.  

We think edge information may make up the faults. Because the edge detect result can always show all the 
body parts. We design a algorithm to make up the lost part. If some moving  patch turns to stop. From the 
image, these patches turns black from white.  We assume these parts may have a low speed at this time. So 
we will check the edge detection result whether the patch in the same location contains edges or not. If so, 
we think it is part of body, so that we will set this patch to white. And keep this patch to white for a while. 
For example, we will keep this patch to be white for 30 frames(1s).  

The result is very good, we can get a rough area which contains almost only the user. And then, we did 
some dilation and closing process on the result. And we fill the hole in the result. So we can get a white 
region of people. And then we did edge detection on this region. We will get a good result and remove all 
other edges. The reason why we don’t use the optical flow result is the result of the single method is not 
accurate. And we did one more process in our algorithm. We sum up the first 20 frames edge information 
as edge history. And if our edge output has the same edge information as the history. We will abandoned 
it. Because all the edges in the history should not belong to the body edge. The edge detection on a specific 
area method becomes much better. The result is shown in figure 7.1 and 7.2.  

The top left image is the movement vector and the origin image. And the top middle image is the result 
after speed threshold and edge compensate. And the top right image is the result of morphological process 
which is a closing process with a 30 pixel diameter disk. And the bottom left image is the original edge 
detection result. And the bottom middle image is the edge result after processing edge detection on the top 
right image with history subtraction method. And bottom right result is the morphological result of the edge 
detection which is a closing process with a disk kernel(rad = 2) . Because the algorithm is slow so that we 
cannot process every frame. So we will get one best frame. With this result we can find the important knots 
and track these knots. While the tracking result is not good so that this method can be used in other 
application. We can refine this algorithm later to make it faster. 
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Figure 7.1 
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Figure 7.2 
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Algorithm specific design 
Mixture of Gaussian is our main principle to handle simple background while optical flow and morphology 
filtering is the guiding idea for the program to deal with complicated background. These two methods with 
their parameters have been explained in detail in the experiment conduction part. 

After segmented segmentation has been done Two methods are developed and a comparison between them 
is given. One method is to use a general feature extraction method in which we extract the four points.  

Vtrack is a candidate to track the four target points. First we find the frame where the person has come into 
the working space and stood straight, four target points are extracted in that certain frame, then vtrack from 
visionx is used to perform tracking. Different parameters have been tuned but the results are poor. Table1 
has shown the parameters and corresponding result figure number.  

Figure number V(number of pixel in 
horizontal search) 

S(number of pixel 
in vertical search) 

Search technique Size of correlation 
patch matrix 

8 8 8 grid 15 
9 20 20 vel 15 
10 20 20 Lin 20 
11 20 25 lin 25 
12 30 30 lin 30 

 

 

Figure 8 vtrack results 
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Figure 9 vtrack results 

 

Figure 10 vtrack results 

 

Figure 11 vtrack results 
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Figure 12 vtrack results 

It can be concluded that when the size of searching area goes bigger, the results are not terrible but still far 
from our original needs. However, such tracking method is still under consideration because it is the fast 
way that we can come up with to track the points after they extracted in one frame. 

 

Extract points in every single frame: The other method we have adopted so far is to search each frame 
separately, this method is relatively slow because a mixture of circular Hough transform, prior knowledge 
based searching are needed for each frame. Provided with enough computational ability or a more strict 
assumptions. This can still be a real time task.  

Following is the detailed information of this method. Our prime target in this procedure is to find the four 
points that can guide us find the two angles that we want. After lots of consideration and discussion, we 
found the fact that if we just search the leftmost of the foreground in the middle (in vertical direction) part 
of the image, chances are that we find the point representing hip. And it’s quite obvious that the foot of a 
human is the lowest point of him/her. Two points are fixed in this way, then we will find the point 
representing knee and back. To search the foot-knee-hip connection, we take advantage of the connectivity 
idea to locate the elbow and knee joints from the hip point and foot point. [ref] Based on the human 
kinematic constraints, if we make a straight line L from hip from to foot, the knee has a movement limitation 
of 𝐿"which intersects with L at the midpoint of foot to hip. Therefore, by searching all the points on  𝐿", 
the knee point can be obtained by minimizing the equation below: 

𝐸$%$&' = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐸(𝑘𝑛𝑒𝑒, 𝑓𝑜𝑜𝑡) + 𝐸(ℎ𝑖𝑝, 𝑘𝑛𝑒𝑒)} 

Where E is the connectivity energy function. For the back, we utilize a trick of squatting. Normally, the 
barbell is set on the top of the back behind the neck. Thus the center of the barbell can be considered as the 
top point of back. A circular Hough transform is designed, we tune different parameters and decide a set of 
parameters that can find the most suitable circle center. The result got from this algorithm is visually all 
percent great and a sample from the video will be shown in the result part.  
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Results & observation 
The result of tracking four target points from the simple background condition is shown in figure 13. 
Visually, we can say the tracking is one hundred percent right. Originally, we think the dataset with labels 
may be considered as cheating, so after the report with our results from dataset without labels have been 
submitted. We will take video with obvious markers on so that we can develop an algorithm to automatically 
calculate in each frame, how distant the target points our program found is from the ground truth we marked. 
And videos of different person with slightly different poses will also be analysed. Then we can put that new 
results in addendum report.  

 

Figure 13 tracking result 

In this report, we present the two angles we calculate from the four points we tracked in the relatively simple 
background. Fig 10 is the angle at knee and figure 15 is the angle we get at hip. In the hypothesis part, we 
assumed that the movement is continuous and slow. So combined with the video result, we can say that the 
smooth part of the angle curve is definitely right, we check the frame corresponding to the sharp change of 
the angle curve and also found the tracking is right. So we can now conclude that our tracking on a simple 
background video for squatting is basically right. Fig 16, 17, 18 illustrates the trajectory of knee, hip and 
top of the back respectively.   
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Figure 14 knee                                   Figure15 hip 

However, in the experiment process of program like optical, we can observe that program with lots of 
process is time consuming to do segmentation on the complicated background video. 

 

Figure 16 knee  
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Figure 17 hip 

 

Figure 18  top of back 

 

Conclusion 
Basically, we have developed a complete set of programs to finish the squat tracking analysis based on 
video subject to our hypothesis. Video with markers will be recorded and numerical analysis based on the 
distance between our detected points and markers will be provided in the addendum report. Feature 
extraction methods based on curvature can also be developed in future and results of complicated 
background will also be analyzed in the addendum report.  
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Program Listing & documentation 

########################################################################## 

#   NAME:        back_sub.py                                             # 

#   Description: Background subtraction experiments                      # 

#   Author:      Jianhua Fan(jf773)  Qian Qiao(qq39)                     # 

#                Beitong Tian(bt346) YanFei Xu(yx427)                    # 

#   Data:        11/20/2017                                              # 

########################################################################## 

 

import cv2 

import numpy as np 

import sys 

import os 

from matplotlib import pyplot as plt 

 

def back_Sub(fpath, mode): 

    cap = cv2.VideoCapture(fpath) 

    total_frame = cap.get(cv2.CAP_PROP_FRAME_COUNT) 

    print(total_frame) 

    if mode == 'MOG2': 

        fgbg = cv2.createBackgroundSubtractorMOG2(5, 15, True) #history, varThreshold, bShadowDetection 

    elif mode == 'MOG': 

        fgbg = cv2.bgsegm.createBackgroundSubtractorMOG(5, 3, 0.7, 0) #history, nmixture, backgroundRatio, noiseSigma 

    elif mode == 'GMG': 

        fgbg = cv2.bgsegm.createBackgroundSubtractorGMG(2,0.5)#initializationFrame, decisionThreshold 

    elif mode == 'CNT': 

        fgbg = cv2.bgsegm.createBackgroundSubtractorCNT(5, True, 15*60, True) #minStability, useHistory, maxStability, isParallel 

    else: 

        print('We only support methods of MOG2, MOG, GMG, CNT now!') 

        exit(1) 

 

    fourcc = cv2.VideoWriter_fourcc('m','p','4','v') 

    output_video = '../results/video/{}.m4v'.format(mode) 
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    try: 

        os.remove(output_video) 

    except OSError: 

        pass 

    out = cv2.VideoWriter(output_video, fourcc, 20.0, (544, 960), False) 

 

    try: 

        while cap.isOpened(): 

            current_frame = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) 

            rate = cap.get(cv2.CAP_PROP_FPS) 

            ret, frame = cap.read() 

            if ret: 

                height, width, layers = frame.shape 

                fgmask = fgbg.apply(frame) 

                if current_frame == 800: 

                    cv2.imwrite('../results/image/original_{}.png'.format(current_frame), frame) 

                    cv2.imwrite('../results/image/{}_{}.png'.format(mode, current_frame), fgmask) 

                out.write(fgmask) 

                cv2.imshow('frame', fgmask) 

                print(current_frame) 

                if cv2.waitKey(1) & 0xFF == ord('q'): 

                    break 

            else: 

                break 

        cap.release() 

        out.release() 

        cv2.destroyAllWindows() 

    except KeyboardInterrupt: 

        print('Stopped for ctr-c') 

        cap.release() 

        out.release() 

        cv2.destroyAllWindows() 

 

def main(): 

    video_name = 'output_CannyEdge.m4v' 
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    mode = sys.argv[1] 

    input_path = '../results/video/' 

    fpath = input_path + video_name 

    back_Sub(fpath, mode) 

 

     

 

if __name__ == "__main__": 

    main() 
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########################################################################## 

#   NAME:        backsub_ours.py                                         # 

#   Description: Background subtraction combines statistical background  # 

#                image estimation and per-pixel Bayesian segmentation.   # 

#   Author:      Jianhua Fan(jf773)  Qian Qiao(qq39)                     # 

#                Beitong Tian(bt346) YanFei Xu(yx427)                    # 

#   Data:        11/20/2017                                              # 

########################################################################## 

import cv2 

import numpy as np 

 

cap = cv2.VideoCapture('../data/trim_start_end.mp4') 

i = 0 

while True: 

    i += 1 

    ret, frame = cap.read() 

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

    if i == 100: 

        background = gray 

        cv2.imwrite('../results/ours_image_{}.jpg'.format(i), background) 

        break 

 

while True: 

    i += 1 

    ret, frame = cap.read() 

    height, width, layers = frame.shape 

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

    gray = gray - background 

    cv2.imshow('frame', gray) 

    if i == 200: 

        cv2.imwrite('../results/ours_image_{}.jpg'.format(i), gray) 

    if cv2.waitKey(1) & 0xFF == ord('q'): 

        break 

cap.release() 

out.release() 
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cv2.destroyALLWindows() 
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########################################################################## 

#   NAME:        autocanny.py                                            # 

#   Description: Automatic threshold for Canny edge operator             # 

#   Author:      Jianhua Fan(jf773)  Qian Qiao(qq39)                     # 

#                Beitong Tian(bt346) YanFei Xu(yx427)                    # 

#   Data:        11/20/2017                                              # 

########################################################################## 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

 

cap = cv2.VideoCapture('../data/input.mp4') 

fourcc = cv2.VideoWriter_fourcc('m','p','4','v') 

out = cv2.VideoWriter('../results/CannyEdge.m4v',fourcc, 20.0, (544,960), False) 

i = 0 

while True: 

    i += 1 

    ret, frame = cap.read() 

    blur = cv2.GaussianBlur(frame, (5, 5), 0)   # noise removal 

    sigma = 0.33 

    v = np.median(frame)     # median pixel 

    lower = int(max(0, (1.0 - sigma) * v)) 

    upper = int(min(255, (1.0 + sigma) * v)) 

    edges = cv2.Canny(blur, lower, upper) 

    cv2.imshow('frame', edges) 

    out.write(edges) 

    if cv2.waitKey(1) & 0xFF == ord('q'): 

        break 

cap.release() 

cv2.destroyAllWindows() 
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########################################################################## 

#   NAME:        Component_extraction.py                                 # 

#   Description: Identify the largest component in the image             # 

#   Author:      Jianhua Fan(jf773)  Qian Qiao(qq39)                     # 

#                Beitong Tian(bt346) YanFei Xu(yx427)                    # 

#   Data:        11/20/2017                                              # 

########################################################################## 

import cv2 

import numpy as np 

import sys 

import os 

from matplotlib import pyplot as plt 

 

def noise_Remove(fpath): 

    cap = cv2.VideoCapture(fpath) 

    total_frame = cap.get(cv2.CAP_PROP_FRAME_COUNT) 

    print(total_frame) 

 

    fourcc = cv2.VideoWriter_fourcc('m','p','4','v') 

    output_video = '../results/video/MOG2_noise_Remove.m4v' 

 

    try: 

        os.remove(output_video) 

    except OSError: 

        pass 

    out = cv2.VideoWriter(output_video, fourcc, 20.0, (544, 960), False) 

 

    try: 

        while cap.isOpened(): 

            current_frame = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) 

            rate = cap.get(cv2.CAP_PROP_FPS) 

            ret, frame = cap.read() 

 

            if ret: 

                height, width, layers = frame.shape 
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                fgmask = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

                nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(fgmask, connectivity=8)     #Component statistics 

                sizes = stats[1:, -1]; nb_components = nb_components - 1 

                min_size = 300 

                img2 = np.zeros((output.shape), np.uint8) 

                for i in range(0, nb_components): 

                    if sizes[i] >= min_size: 

                        img2[output == i + 1] = 255 

                        plot.imshow(img2) 

                        plot.show() 

                out.write(img2) 

                cv2.imshow('frame', img2) 

                print(current_frame) 

                if cv2.waitKey(1) & 0xFF == ord('q'): 

                    break 

            else: 

                break 

        cap.release() 

        out.release() 

        cv2.destroyAllWindows() 

    except KeyboardInterrupt: 

        print('Stopped for ctr-c') 

        cap.release() 

        out.release() 

        cv2.destroyAllWindows() 

 

def main(): 

    video_name = 'MOG2.m4v' 

    input_path = '../results/video/' 

    fpath = input_path + video_name 

    noise_Remove(fpath) 

 

 

 

if __name__ == "__main__": 
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    main() 
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Tracking.py: 

1. from __future__ import print_function   
2. import cv2   
3. import numpy as np   
4. import sys   
5. import os   
6. from matplotlib import pyplot as plt   
7. import sys   
8.    
9.    
10. def com_angle(bar, hip, knee, foot):   
11.     first = hip - bar   
12.     second = hip - knee   
13.     three = foot - knee   
14.     cosine_angle_bhk = np.dot(first, second) / (np.linalg.norm(first) * np.linalg.norm(second))   
15.     cosine_angle_hkf = np.dot(second, three) / (np.linalg.norm(second) * np.linalg.norm(three))   
16.     print(cosine_angle_hkf)   
17.     angle_bhk = np.arccos(cosine_angle_bhk)   
18.     angle_hkf = np.arccos(cosine_angle_hkf)   
19.     print(np.degrees(angle_hkf))   
20.     return np.degrees(angle_bhk), np.degrees(angle_hkf)   
21.    
22. def find_joint(img, prev_x, prev_y):   
23.        
24.     img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)   
25.     # ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)   
26.    
27.     (height, width) = img.shape   
28.        
29.    
30.     ###hip bottom - 1/2   
31.     x_hip = width   
32.     y_hip = -1   
33.     for i in range(height-1, height/2, -1):   
34.         for j in range(width):   
35.             if img[i, j] ==255:   
36.                 break   
37.         if j < width - 1:   
38.             if j < x_hip:   
39.                 x_hip = j   
40.                 y_hip = i   
41.    
42.     # print(x_hip,y_hip)   
43.    
44.     ####foot  bottom to 1/8   
45.     x_foot = width   
46.     y_foot = -1   
47.     # for i in range(height-1, height*4/5, -1):   
48.     #     for j in range(width):   
49.     #         if img[i, j] == 255:   
50.     #             break   
51.     #     if j < width - 1:   
52.     #         if j < x_foot:   
53.     #             x_foot = j   
54.     #             y_foot = i   
55.     x_foot = 275   
56.     y_foot = 872   
57.     # print(x_foot,y_foot)   
58.    



 
31 

 

59.     ######knee  in the middle of hip and foot    
60.     x_knee = 0   
61.     y_knee = 0   
62.     ########method 1   
63.     # for i in range(height*4/5, y_hip, -1):   
64.     #     for j in range(width):   
65.     #         if img[i, j] == 255:   
66.     #             break   
67.     #     if j < width - 1:   
68.     #         if j > x_knee:   
69.     #             x_knee = j   
70.     #             y_knee = i   
71.     # real_x_knee = x_knee   
72.     # real_y_knee = y_knee   
73.     # if prev_y_knee != 0 and abs(prev_y_knee - y_knee) > 10:   
74.     #     y_knee = prev_y_knee   
75.     #     x_knee = prev_x_knee   
76.    
77.     # print(x_knee, y_knee)   
78.        
79.     ####method 2   
80.     # for i in range(height*4/5, y_hip+50, -1):   
81.     #     for j in range(width-1, -1, -1):   
82.     #         if img[i, j] == 255:   
83.     #             break   
84.     #     if j > 0:   
85.     #         if j > x_knee:   
86.     #             x_knee = j   
87.     #             y_knee = i   
88.     # print(x_knee, y_knee)   
89.    
90.     #####method 3   
91.     k = float(y_hip-y_foot)/(x_hip-x_foot)   
92.     middle_k = (0 - 1 / k)   
93.     middle_x = (x_hip+x_foot)/2   
94.     middle_y = (y_hip+y_foot)/2   
95.     for j in range(width):   
96.         i = middle_y+middle_k*(j - middle_x)   
97.         i = int(i)   
98.         if j > 0 and j < height and img[i, j] == 255:   
99.             x_knee = j   
100.             y_knee = i   
101.             break   
102.     # print(x_knee, y_knee)   
103.    
104.    
105.     ####head   
106.     circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,1,   
107.                             param1=30,param2=20,minRadius=90,maxRadius=150)   
108.     # circles = circles[0,:]   
109.     if  circles is not None:   
110.         circles = np.uint16(np.around(circles))   
111.         # circles = circles[circles[:,2].argsort()]   
112.         # x, y, r = circles[0]   
113.            
114.         x_bar = y_bar = 0   
115.         min_diff = sys.maxint   
116.         for (x,y,r) in circles[0, :]:   
117.             diff = (x-prev_x)*(x-prev_x)+(y-prev_y)*(y-prev_y)   
118.             if diff < min_diff:   
119.                 min_diff = diff   
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120.                 x_bar = x   
121.                 y_bar = y   
122.         x = x_bar   
123.         y = y_bar   
124.     else:   
125.         x = prev_x   
126.         y = prev_y   
127.    
128.        
129.    
130.    
131.     img = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)   
132.     cv2.circle(img,(x_foot, y_foot),5,(0,0,255),3)   
133.     cv2.circle(img,(x_hip, y_hip),5,(0,0,255),3)   
134.     cv2.circle(img,(x_knee, y_knee),5,(0,0,255),3)   
135.     cv2.circle(img,(x, y),5,(0,0,255),3)   
136.    
137.     # cv2.circle(img,(x, y),r,(0,255,0),2)   
138.     # cv2.circle(img,(x, y),2,(0,0,255),3)   
139.    
140.     cv2.line(img,(x_foot,y_foot),(x_knee,y_knee),(0,255,0),3)   
141.     cv2.line(img,(x_hip,y_hip),(x_knee,y_knee),(0,255,0),3)   
142.     cv2.line(img, (x_hip,y_hip), (x, y), (0,255,0), 3)   
143.    
144.     bar = np.array([x_bar, y_bar])   
145.     hip = np.array([x_hip, y_hip])   
146.     knee = np.array([x_knee, y_knee])   
147.     foot = np.array([x_foot, y_foot])   
148.    
149.     with open('../results/txt/bar.txt', 'a') as f_bar:   
150.         print(bar, file=f_bar)   
151.     with open('../results/txt/hip.txt', 'a') as f_hip:   
152.         print(hip, file=f_hip)   
153.     with open('../results/txt/knee.txt', 'a') as f_knee:   
154.         print(knee, file=f_knee)   
155.     with open('../results/txt/foot.txt', 'a') as f_foot:   
156.         print(foot, file=f_foot)   
157.    
158.     bhk, hkf = com_angle(bar, hip, knee, foot)   
159.    
160.     return (img, x, y, bhk, hkf)   
161.    
162. def read_video(fpath):   
163.    
164.     cap = cv2.VideoCapture(fpath)   
165.     total_frame = cap.get(cv2.CAP_PROP_FRAME_COUNT)   
166.        
167.    
168.     fourcc = cv2.VideoWriter_fourcc('m','p','4','v')   
169.     output_video = '../results/video/joints_maximum.m4v'   
170.     try:   
171.         os.remove(output_video)   
172.     except OSError:   
173.         pass   
174.     out = cv2.VideoWriter(output_video, fourcc, 30.0, (544, 960), True)   
175.    
176.    
177.     try:   
178.         x = y = 0   
179.         while cap.isOpened():   
180.             current_frame = int(cap.get(cv2.CAP_PROP_POS_FRAMES))   
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181.             rate = cap.get(cv2.CAP_PROP_FPS)   
182.             # print(rate)   
183.             ret, frame = cap.read()   
184.             if ret and current_frame < 500:   
185.                 height, width, layers = frame.shape   
186.    
187.                 result, x, y, bhk, hkf = find_joint(frame, x, y)   
188.                 with open('../results/angle.txt', 'a') as f:   
189.                     print(current_frame, bhk, hkf, file=f)   
190.    
191.                 cv2.namedWindow('image',cv2.WINDOW_NORMAL)   
192.                 cv2.resizeWindow('image', 600,600)   
193.                 cv2.imshow('image', result)   
194.                 out.write(result)   
195.                 if cv2.waitKey(1) & 0xFF == ord('q'):   
196.                     break   
197.             else:   
198.                 break   
199.         cap.release()   
200.         out.release()   
201.         cv2.destroyAllWindows()   
202.     except KeyboardInterrupt:   
203.         print('Stopped for ctr-c')   
204.         cap.release()   
205.         out.release()   
206.         cv2.destroyAllWindows()   
207.    
208. def main():   
209.     video_name = 'new_trim.m4v'   
210.     input_path = '../data/'   
211.     fpath = input_path + video_name   
212.     read_video(fpath)   
213.    
214.        
215.    
216. if __name__ == "__main__":   
217.     main()   
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UNIX style Program Description: 

 

NAME 

 

back_sub – pass a key word to perform corresponding background subtraction 

 

SYNOPSIS 

   
back_sub [-method]  

 

DESCRIPTION 

 

  Back_sub program pass the choices of background_subtractor to perform background subtraction on the input video, the choice 
provided in our program are: MOG2, MOG, GMG, CNT.  

 

 

CONSTRAINTS 

 

  The input should be a video with frame size 544*966.   

 

OPTIONS 

 

[value]   Specify the background subtractors to choose: MOG2, MOG, GMG, CNT 

 

AUTHOR(S) 

 

  Jianhua Fan(jf773)  Qian Qiao(qq39) 

 

SEE ALSO 

 

  backsub_CNT.py, backsub_GMG.py, backsub_MOG.py, backsub_MOG2.py 
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NAME 

 

autocanny – automatically generate optimal edge frames in a video 

 

SYNOPSIS 

   
autocanny  

 

DESCRIPTION 

 

This program takes the median of the image from a video, then constructs upper and lower thresholds based on a percentage of this 
median, then pass to canny edge operator to generate the optimal edge image. 

 

 

CONSTRAINTS 

 

The input should be a video with frame size 544*966.   

 

OPTIONS 

 

None 

 

AUTHOR(S) 

 

 Jianhua Fan(jf773)  Qian Qiao(qq39) 

 

SEE ALSO 

None 
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NAME 

 

Component_Extraction –Identify the largest component 

 

SYNOPSIS 

   
Component_Extraction 

 

DESCRIPTION 

 

 This program takes a video as input, identify the largest component in each frame, and output .  

 

 

CONSTRAINTS 

 

 The input should be a video processed after segmenttion, with each frame size 544*966.  . 

 

OPTIONS 

 

None 

 

AUTHOR(S) 

 

Jianhua Fan(jf773)  Qian Qiao(qq39) 

 

SEE ALSO 

  

None 
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Name: 

<OE_bg_subtraction>-<This program will return a perfect body region> 

 

SYNOPSIS: 

OE_bg_subtraction [add = address] [ps = patchsize] ] [th = threshold]  

Description: 

This program can automatically recognize the frame when the user is fully shown in the video. And 
automatically remove noises and extract the body region with black and white output image. 

 

Constraints:  

The dataset(video) should have some constraints. The user should step into the video from one side.  

 

Options : 

 

Address =<absolute address> 

Specifies the address of the video file 

patchsize = <int> 

specifies the patch side length, default is 4 

Threshold = <int> 

Specifies the minimum speed that a patch can be recognized as a body part 

 

 

Authors: 

Squat detection team 
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NAME 

tracking.py – track the key features of people doding squatting from video. 

SYNOPSIS 

python tracking.py 

DESCRIPTION 

This program is used to track and compute the key features from video sequence, including hip, knee, foot 
and barbell centroid. In addition, it computes the angle between the line of bar-hip and hip-knee, the line of 
hip-knee and knee-foot. 

CONSTRAINTS 

The input video is 544*960 

AUTHOR 

Jianhua Fan 

 

Name: 

<Background_extraction>-<This program recovers the real background> 

 

SYNOPSIS: 

Background_extraction [add = address] [ps = patchsize] ] [th = threshold] [tt = tmpth] [cb = countbg]  

 

Description: 

This program can recover the real background from a video. It can remove some simple object in the image.  

 

Constraints:  

The dataset(video) should contain an object whose brightness is different from the background it blocks. 
And the object should be able to move and expose the real background it blocks totally.  

 

Options : 

 

Address =<absolute address> 

Specifies the address of the video file 

patchsize = <int> 

specifies the patch side length, default is 4 
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Threshold = <int> 

specifies the max brightness difference that we can infer two frames are stable, default is 2 

Tmpth = <int> 

specifies the max brightness that a patch can be inferred to foreground 

Countbg = <int> 

specifies the minimum stable frame number that a patch can be set to result 

 

Authors: 

Squat detection team 
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Background extraction 

patchsize = 4; 
threshold = 8; 
count_th = 60; 
countbg = 3;   
threshold2 =2; 
tmpth = 60; 
patcharea = patchsize * patchsize; 
curr_temp =zeros(patchsize); 
prev_temp =zeros(patchsize); 
filename = 'computer visoin project 2017-11-11 10.18.55.mp4'; 
mov = VideoReader(filename); 
numFrames = mov.NumberOfFrames; 
FramesX = mov.Height; 
FramesY = mov.Width; 
cell_number_Y = mov.Height/patchsize; 
cell_number_X = mov.Width/patchsize; 
histogram1 = zeros(cell_number_Y,cell_number_X,numFrames); 
status = zeros(cell_number_Y,cell_number_X); 
count = zeros(cell_number_Y,cell_number_X); 
patch_matrix_Y = ones(1,cell_number_Y)*patchsize; 
patch_matrix_X = ones(1,cell_number_X)*patchsize; 
numFramesWritten = 0; 
PrevFrame = rgb2gray(read(mov,1)); 
PrevFrame_split = mat2cell(PrevFrame,patch_matrix_Y,patch_matrix_X); 
HIS = PrevFrame_split; 
Frame_extract = zeros(FramesX,FramesY,'uint8'); 
Frame_extract = mat2cell(Frame_extract,patch_matrix_Y,patch_matrix_X); 
BGhistory = zeros(cell_number_Y,cell_number_X); 
for i = 1 : cell_number_Y 
    for j = 1 : cell_number_X 
        BGhistory(i,j) = sum(sum(PrevFrame_split{i,j} )) / patcharea; 
    end 
end 
BGhistory_count = zeros(cell_number_Y,cell_number_X); 
 
for t = 2 : 270 
currFrame = rgb2gray(read(mov, t)); 
currFrame_split = mat2cell(currFrame,patch_matrix_Y,patch_matrix_X); 
current = t 
for i = 1 : cell_number_Y 
    for j = 1 : cell_number_X    
        tempave = sum(sum(currFrame_split{i,j} )) / patcharea; 
        temp = abs(tempave - BGhistory(i,j)); 
        if(abs(temp)<threshold2 && BGhistory_count(i,j)<countbg && status(i,j) == 
0 && tempave> tmpth) 
            BGhistory_count(i,j) = BGhistory_count(i,j) + 1; 
        elseif (abs(temp)>=threshold2 && status(i,j) == 0) 
            BGhistory(i,j) = tempave; 
            BGhistory_count(i,j) = 0; 
        end  
        if (BGhistory_count(i,j) ==countbg && status(i,j) == 0) 
            Frame_extract{i,j} = currFrame_split{i,j}; 
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            status(i,j) = 1; 
        end 
    end 
end 
 
Frame_output = cell2mat(Frame_extract); 
figure(1), 
imshow (Frame_output); 
end 
 
patchsize = 1; 
cell_number_Y = mov.Height/patchsize; 
cell_number_X = mov.Width/patchsize; 
patch_matrix_Y = ones(1,cell_number_Y)*patchsize; 
patch_matrix_X = ones(1,cell_number_X)*patchsize; 
patcharea =patchsize * patchsize;  
Frame_extract_split = mat2cell(Frame_output,patch_matrix_Y,patch_matrix_X); 
PrevFrame_split_2 = mat2cell(PrevFrame,patch_matrix_Y,patch_matrix_X); 
 
for i = 1 : cell_number_Y 
    for j = 1 : cell_number_X 
        tempave = sum(sum(Frame_extract_split{i,j} )) / patcharea; 
        if tempave <= 50 
            Frame_extract_split{i,j} = PrevFrame_split_2{i,j}; 
        end 
    end 
end 
 
Frame_output_2 = cell2mat(Frame_extract_split); 
figure(2), 
imshow (Frame_output_2); 
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Optical flow based background subtraction with edge detect compensation 

count = 1; 
show =1; 

patchsize = 4; 

tempave = 0; 

frame = 0; 

 

filename = 'input2.avi'; 

threshold = 0.027; 

vidReader = VideoReader(filename); 

numFrames = vidReader.NumberOfFrames; 

count_cell = zeros(1,numFrames); 

 

FramesX = vidReader.Height; 

FramesY = vidReader.Width; 

 

cell_number_X = vidReader.Height/patchsize; 

cell_number_Y = vidReader.Width/patchsize; 

cell_num = cell_number_X * cell_number_Y; 

 

patcharea = patchsize * patchsize; 

 

increase_threshold = 10; 

low_threshold = cell_num * 0.04; 

 

patch_matrix_Y = ones(1,cell_number_Y)*patchsize; 

patch_matrix_X = ones(1,cell_number_X)*patchsize; 

 

result = zeros(FramesX,FramesY,'uint8'); 

result_combine = zeros(FramesX,FramesY,'uint8'); 

 

result_split = mat2cell(result,patch_matrix_X,patch_matrix_Y); 
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opticFlow = opticalFlowHS('Smoothness',1); 

 

status = zeros(cell_number_X,cell_number_Y,'uint8'); 

count2 = ones(cell_number_X,cell_number_Y,'uint8'); 

status_for_edge_history = zeros(cell_number_X,cell_number_Y,'uint8'); 

 

 

 

for frame = 1:numFrames 

    count = count + 1 

    frameRGB = read(vidReader, frame); 

    frameGray = rgb2gray(frameRGB); 

    flow = estimateFlow(opticFlow,frameGray); 

    flow_m_split = mat2cell(flow.Magnitude,patch_matrix_X,patch_matrix_Y); 

     

     

    if(show == 1) 

    figure(1), 

    imshow(frameGray); 

    hold on 

    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',25); 

    hold off  

    end 

     

    for i = 1 : cell_number_X 

        for j = 1 : cell_number_Y    

            tempave = sum(sum(flow_m_split{i,j} )) / patcharea; 

            if(tempave >= threshold) 

                result_split{i,j} = uint8(ones(patchsize)*255); 

                if(count >2) 

                count_cell(count) = count_cell(count) + 1; 

                end 

            else 
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                result_split{i,j} = uint8(zeros(patchsize)); 

            end       

        end 

    end 

     

    if(count > 2) 

        if(count > 30 && count_cell(count) - count_cell(count-1) < -3) 

            result = cell2mat(result_split) 

            figure(3), 

            imshow(result_previous); 

             

    se = strel('disk',30); 

    result_previous = imclose(result_previous,se); 

     

    figure(4), 

    imshow(result_previous); 

    result_split_previous = mat2cell(result_previous,patch_matrix_X,patch_matrix_Y); 

 

    [result_edge,thr] = edge(frameGray_previous,'Canny'); 

    trick = edge(rgb2gray(read(vidReader, 1)),'Canny'); 

    figure(10), 

    imshow(result_edge); 

    frameGray = rgb2gray(frameRGB); 

    for i = 1:FramesX 

        for j =1:FramesY 

             if(result_previous(i,j) == 0 || trick(i,j)==1) 

                result_edge(i,j) = 0; 

             end 

         end 

    end         

             

    figure(5), 

    imshow(result_edge); 
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    se = strel('disk',20); 

    result_edge = imclose(result_edge,se); 

    figure(6), 

    imshow(result_edge); 

     

    result_fill =  imfill(result_edge,'holes') ;       

    figure(7), 

    imshow(result_fill); 

     

    se = strel('disk',5); 

    result_open =  imopen(result_fill,se);       

    figure(8), 

    imshow(result_open); 

             

    se = strel('disk',2); 

    result_close =  imclose(result_open,se) ;       

    figure(9), 

    imshow(result_close); 

             

    imwrite(result_close,strcat('preprocess_input1.png')); 

    break; 

             

        end 

    end 

     

    if(show == 1) 

        figure(2),  

        result_combine = cell2mat(result_split); 

        result_split_previous = result_split; 

        imshow (result_combine); 

        result_previous = result_combine; 

        frameGray_previous = frameGray; 
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    else  

        result_combine = cell2mat(result_split); 

    end     

     

    imwrite(result_combine,strcat('..\imgdata\',num2str(count),'.png')); 

end 

 

myObj = VideoWriter('result6.avi'); 

writerObj.FrameRate = 30; 

open(myObj); 

for i=1:count - 1 

   fname=strcat('..\imgdata\',num2str(i),'.png'); 

   frame = imread(fname); 

   writeVideo(myObj,frame); 

end 

close(myObj); 
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