Squat tracking

<Beitong Tian bł346><Jianhua Fan jf773>
<Qianqiao qq39><Yanfei Xu yx427>

Overview

- Dataset
- Pre-processing
- Feature extraction \& tracking
- Results \& analysis

Introduction

Datase†

- Self made datase \dagger
- Hypothesis
- Ground truth
- 2 different background

Pre-processing

- Background extraction
- Regular Background subtraction
- Mixture of Gaussian
- Background subtraction use optical flow
- Edge detection

Background extraction

Regular Background subtraction

Mixture of Gaussian

Optical flow

Feature extraction

- Hough transform
- Maximum curvature
- Polygon representation
- Human kinematic constraints
- Extreme points

Tracking \& speed

- Option 1: Vtrack - Option 2: Process each frame completely

foot

Compute at first frame Leftmost point

And then fix it

Barbell centroid

Hough transform

Find circles and centroids
Choose the one that is closest to the previous frame

hip

knee

Connectivity: two points belong to the same region if you can make a straight line between them without intersecting any silhouette boundaries

Connectivity energy function

$$
E(i, j)=f(x)=\left\{\begin{array}{rc}
D(i, j), & \text { if connectivity }(i, j)=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

knee

Connectivity: two points belong to the same region if you can make a straight line between them without intersecting any silhouette boundaries

Connectivity energy function

$$
\begin{gathered}
E(i, j)=f(x)=\left\{\begin{array}{rc}
D(i, j), & \text { if connectivity }(i, j)=1 \\
0, & \text { otherwise }
\end{array}\right. \\
\begin{array}{l}
\text { Knee point can be obtained to minimize } \\
\text { the connectivity energy function }
\end{array} \\
E_{\text {total }}=\operatorname{argmin}_{\text {knee }}\{E(\text { hip }, \text { knee })+E(\text { knee }, \text { foot })\}
\end{gathered}
$$

Results \& Analysis

hip

shoulder

Angles Computing

Angle at knee

Angle at hip

Results Evaluation

- Using Markers
- compute points using proposed algorithm, if it is within marker, it is correctly detected, otherwise wrong.

$$
Q \& A
$$

